
Supporting Web-based API Searches in the IDE Using Signatures
Nick C. Bradley
ncbrad@cs.ubc.ca

The University of British Columbia
Canada

Thomas Fritz
fritz@ifi.uzh.ch

University of Zurich
Switzerland

Reid Holmes
rtholmes@cs.ubc.ca

The University of British Columbia
Canada

ABSTRACT
Developers frequently use the web to locate API examples that
help them solve their programming tasks. While sites like Stack
Overflow (SO) contain API examples embedded within their textual
descriptions, developers cannot access this API knowledge directly.
Instead they need to search for and browse results to select relevant
SO posts and then read through individual posts to figure out which
answers contain information about the APIs that are relevant to
their task. This paper introduces an approach, called Scout, that
automatically analyzes search results to extract API signature infor-
mation. These signatures are used to group and rank examples and
allow for a unique API-based presentation that reduces the amount
of information the developer needs to consider when looking for
API information on the web. This succinct representation enables
Scout to be integrated fully within an IDE panel so that developers
can search and view API examples without losing context on their
development task. Scout also uses this integration to automatically
augment queries with contextual information that tailors the devel-
oper’s queries, and ranks the results according to the developer’s
needs. In an experiment with 40 developers, we found that Scout
reduces the number of queries developers need to perform by 19%
and allows them to solve almost half their tasks directly from the
API-based representation, reducing the number of complete SO
posts viewed by approximately 64%.

1 INTRODUCTION
Developers rely on the specialized functionality provided by ap-
plication programming interfaces (APIs) to help them complete
their development tasks [44]. Before they can use an API, develop-
ers need to discover which APIs might be appropriate considering
the code they are working on and how the API is meant to be
used [1]. One common way developers look for potential APIs is
through search engines like Google [16, 45]. Unfortunately, this in-
troduces workflow friction as developers have to frequently switch
between their IDE and browser [6, 32], copy code terms into their
searches [21, 46], and manage a large number of browser tabs as
they assess different solutions [9, 25]. Even when a web page, such
as a Stack Overflow (SO) post, contains the required API informa-
tion, developers have to read through the content to identify which
APIs are present and how they might fit into their code [17]. These
extra steps affect developers’ focus and increase their cognitive
load [12].

To address some of these challenges, researchers have investi-
gated approaches to help developers find information relevant to
their development tasks. Early web-based code search approaches,

© 2024 The Authors. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published
in the Proceedings of the 46th International Conference on Software Engineering
(ICSE ’24), https://doi.org/10.1145/3597503.3639089.

such as Mica [42] and Assieme [14], augmented search results with
links to code elements contained within the search result pages to
help developers refine the results. With the growth of SO as an es-
sential source of development knowledge, approaches have focused
on summarizing SO posts to answer a developer’s query. For exam-
ple, AnswerBot uses natural language processing to combine the
textual information frommultiple posts to create diverse summaries
without focusing specifically on providing API information [46].
Biker provides summary documentation for specific APIs relevant
to a developer’s search query but requires a custom search engine
indexed on SO data dumps and the official Java documentation [17].
More recent tools based on large language models (LLMs), such
as ChatGPT and Copilot, offer alternative ways for developers to
obtain solutions to their tasks. However, the solutions produced
by these approaches can be incorrect [30], verbose [18], and often
require repeated refinement of the queries [28], making it difficult
for developers to understand and compare solutions.

In this paper, we introduce an approach, called Scout, which
succinctly represents the results of a search query using API sig-
natures to make it easier for developers to identify and compare
information relevant to their API search tasks (Figure 1b). Specif-
ically, Scout adapts the presentation of SO Google search result
pages so developers can more directly compare alternative solu-
tions in the limited space of the IDE by hiding non-essential and
duplicate information.

Scout extracts these signatures, consisting of a method name,
class type, parameter type(s), and return type, from the SO posts in
the developer’s search results. These signatures are presented as
focus points, giving developers an overview of potential solutions
without having to examine each post individually. This overview
encourages top-down information gathering where developers first
identify the most appropriate signatures before examining detailed
code examples and descriptions from the source SO posts.

Scout is integrated into the IDE enabling developers to assess
their search results directly from their code without losing focus on
their current task. Using this integration, Scout also automatically
derives terms, such as variable types and library names, from the
code the developer is working on as context to improve the API
signature recommendations. When making a search, Scout suggests
some of these terms to help scope the developer’s query. Once the
developer has performed their search, Scout extracts the embedded
API call signatures from each SO post in the search results. Scout
presents the top-three signatures under the title of each post after
ranking the signatures by their frequency of occurrence and the
number of types they share with the developer’s context.

To evaluate Scout, we conducted a controlled experiment with
40 developers. In the experiment, we asked participants to complete
six coding tasks, randomly assigning them to either our experimen-
tal treatment, which presented API call signatures, or a baseline

https://orcid.org/0000-0001-9974-0794
https://orcid.org/0000-0002-1834-6240
https://orcid.org/0000-0003-4213-494X
https://doi.org/10.1145/3597503.3639089

Bradley, Fritz, Holmes

(a) Standard view with Google’s text preview. (b) Scout with API signatures.

(c) Expanded API call signature in Scout with
class type (Intl.NumberFormat), function name
(format), parameter types (number) and return
type (string). Icons from left to right indicate
whether the signature came from the accepted,
top-voted, ormost recent answer. The currently
selected USAGE tab shows just the function call
and the parent variable (money) while the CODE
tab shows the full code example. Clicking the
icon on the right opens the full answer inside
Scout.

Figure 1: Search results interface.

treatment which presented regular Google search results within
the IDE. For the study, we implemented Scout as a VSCode IDE
extension that ran directly in participants’ browsers, recording their
interaction and feedback as they completed the study tasks.

Overall, Scout made the most relevant information more directly
accessible, resulting in participants completing almost half of the
tasks directly using Scout’s signature presentation and significantly
reducing the number of posts opened by participants by 64%. Fur-
ther, participants valued Scout’s API-centered presentation and
Scout’s automatically inferred context terms helped to significantly
reduce the number of searches that developers performed.

This paper makes two primary contributions:
(1) A novel approach and prototype tool supporting developers’

API queries by (a) presenting the search results centered
around API signatures to direct further investigation, and
(b) using type information to rank the fit of the API signa-
tures with the developer’s code. Unlike prior approaches,
Scout works with live search results rather than building a
custom search engine indexing offline data dumps.

(2) A dataset and empirical findings from a controlled experi-
ment with 40 developers demonstrating that Scout supports
developers in finding the information they need to complete
API tasks more effectively than a traditional web search.

2 APPROACH
Up to 50% of developers’ searches are to locate and obtain API
information relevant to their current task [1, 14, 16, 21, 39, 45].

For these searches, developers usually switch from their IDE to a
web browser, create a query, parse through the query results, go
through the result pages to locate relevant information, and, once
located, go back and forth between their code and the web browser
to understand if and how the information fits [6, 31]. These actions
are extraneous to the task and detrimental to developers’ focus and
cognitive load [12].

Our objective is to direct developers to the API information most
relevant to their tasks. Concretely, we aim to focus a developer’s
search and navigation towards task-relevant information, reduce
the amount of content developers need to investigate, tailor the
remaining information to the developer’s working context, and
present the results within the IDE to minimize cross-application
switches.

We chose a focus+context design which enables developers to
first identify interesting APIs and then obtain additional contex-
tual information to help the developer integrate the API into their
code [26]. We use API call signatures as focus points within the
results of a search (Figure 1b) since call signatures are both compact
and provide enough information for developers to understand how
they work [24]. Developers can expand the API signature to a min-
imal code example to obtain additional usage context (Figure 1c).

The focus+context design was the result of an iterative design
process informed by our prior observations of developers searching
Google during live-streamed development sessions [6]. Our initial
design used text snippets, extracted from SO answers referencing
elements in the developer’s source code, to explain the API. How-
ever, we found that prose made it difficult for developers to identify

Supporting Web-based API Searches in the IDE Using Signatures

how to use the API (e.g., input and return types) and often required
considerable space in the IDE due to the low information density
of written text. In a subsequent design, we provided minimal code
examples, displaying only the lines of code referencing the API
related to the developer’s source code, to make API usage more
apparent. However, even with this design, it was still difficult for
developers to identify and compare APIs as the API calls were ob-
fuscated by the other code in the example. Nonetheless, the design
provided valuable context when developers wanted to use the API,
so we included it in our prototype as the default view when the
signature is expanded.

Our final Scout prototype is implemented as VSCode extension
supporting the JavaScript programming language and focuses on
retrieving API-related information from Stack Overflow as it is
one of the most commonly used Q&A websites for developers [45].
Figure 2 provides an outline of the steps Scout performs when
answering a developer’s search query.

2.1 Contextualizing Developer’s Searches
Scout uses context terms extracted from the code the developer is
working on in the IDE’s editor to (i) automatically augment the
developer’s search queries and (ii) rank the search results. When-
ever a developer switches to Scout, the context terms are extracted
from the Abstract Syntax Tree (AST) of the developers’ active code
file. Scout identifies the function the developer is working on (the
active function) by using the cursor location in the code file. Scout
retrieves the function’s class type, parameter types, return types,
and the types of any in-scope variables, along with the names of
external libraries and any function calls made within the active
function whose call chain originates in an external library. Scout
retrieves the programming language from the file extension.

Scout automatically suggests the programming language, exter-
nal library names, and library call context terms whenever a devel-
oper performs a query (Figure 2a). By default, these terms are added
to the developer’s query to tailor the search to the developer’s code
context. Adding these context terms to a developer’s search query
is motivated by prior observations that developers typically include
terms such as the name of the programming language, frameworks,
and libraries (e.g., HTML/JQuery) when searching the web [16].
The developer’s search is ultimately performed using Google1 with
the site:stackoverflow.com domain filter (Figure 2b).

When recommending API signatures identified within the search
results (Section 2.2), Scout uses the type context (class, parame-
ter/variable, and return types) to rank the signatures based on how
easily they could be implemented in the scope of the active function.

2.2 Identifying Relevant Signatures
To generate the API signatures from SO posts, Scout uses a three-
step process (Figure 2c). First, the code blocks within each answer
of a SO post are merged into a single virtual file which is then
parsed into an AST using ts-morph,2 a wrapper for the TypeScript
compiler. When parsing, Scout assumes that the programming lan-
guage in the code blocks is the same as that of the source code

1We use SerpAPI (https://serpapi.com) to avoid manually scraping search results.
2https://ts-morph.com/

Figure 2: Scout’s search process.

the developer is working on in the IDE; answers for which pars-
ing fails are ignored. Second, Scout identifies the top-level call
expressions within the parsed ASTs, excluding commonly used
global calls, which, for JavaScript, include console.*, alert, and
require. Finally, Scout uses a best-effort approach to resolve the
class, parameter, and return types for the signatures based on the
calls and surrounding example code in the SO answer. Specifically,
Scout infers the type from literal values used in the example. In
cases where answers are incomplete (e.g., an undefined variable
passed as a parameter), Scout extracts a partial signature omitting
the types that could not be determined (for parameter types, we
substitute unknown to maintain parameter positions). For calls that
are part of the language, Scout further abstracts any literal types
using the compiler’s built-in type definitions.

Scout includes the top three API call signatures generated for a
SO post, based on the signature’s frequency within the post and by
the number of types that overlap with the function the developer
is actively working on (see section 2.1). Types overlap when the
signature’s class type matches an imported type or any types in the
scope of the developer’s active function (e.g., variable or parameter),
the signature’s parameter types match any types in the scope of the
active function, or the signature’s return type matches the return
type of the active function.

2.3 Integrating Results Within the IDE
Scout renders a succinct summary of a developer’s search results
(Figure 2d), providing the title of the post (textual description) and
the top three API call signatures and code examples essential for
understanding and using the APIs [29, 47]. In contrast to Google
where the information provided by the summary varies (Figure 1a),
Scout’s signature summary consistently provides the required in-
formation (Figure 1b). Additionally, Scout prefixes the signatures
with up to three icons (check mark, arrow, and clock) indicating the
quality of the SO answers (accepted, top-voted, and most-recent,

https://serpapi.com
https://ts-morph.com/

Bradley, Fritz, Holmes

respectively) the signature comes from. The compact nature of
Scout’s signature representation, combined with the textual de-
scription, make the representation ideal for summarizing search
results within the limited space in the IDE.

To help developers better assess the suitability of an API call and
integrate it into their code, Scout also provides a minimal usage
example when the signature is expanded (Figure 1c). Scout extracts
usage examples from the highest voted answers that contain the
signature. For the minimal usage example, Scout includes only the
function call, source object, parameter values, and the return value
of the call. Scout also provides the corresponding full code example
in the CODE tab (Figure 1c) from the answer of the post, in case
developers need additional information to understand the API call
and its context. Finally, developers can open the full answer on the
SO post within Scout by clicking on the signature.

Our approach aims to reduce the effort required for locating and
integrating relevant API information into the code. Specifically, to
avoid the back-and-forth navigation between the IDE and pages
in a web browser, Scout presents the search results next to the
developer’s active code editor and focuses on the most relevant
information to accommodate the limited space within the IDE. The
proximity of the search results to the active code file, and the focus
on the relevant parts of the search results within Scout, are meant
to make it easier for developers to understand if an API call is suited
for their coding task while allowing the API call to be used directly.

3 METHODOLOGY
We conducted a controlled experiment with 40 participants compar-
ing our signature-based presentation with standard Google search
results to evaluate whether Scout effectively distills the essential
information developers require to identify API solutions.

3.1 Experimental Design
The controlled experiment followed a within-participant design
in which participants completed tasks with two treatments: a con-
trol treatment that presented results directly from Google search
and our experimental interactive API treatment. Participants were
randomly assigned to one of four counterbalanced experimental
blocks, as shown in Figure 3. The experiment was conducted in
three phases across the six independent tasks described in Table 1.

Figure 3: Randomized blocking for the tasks T0–T6. Dark
tasks: Scout treatment; light tasks: control treatment.

Phase A: Training. At the outset of the experiment, we introduced
participants to Scout through a guided walkthrough where they
completed a mandatory tutorial task (T0).
Phase B: Controlled queries. In this phase, we asked participants to
solve four independent tasks (T1–T4), two with the control (Google
search) and two with the experimental treatment (Scout). While the
task and treatment orders were randomized, treatment blocks were
always consecutive to reduce disorientation caused by changing
the interface too often. In this phase, we suggested an initial query
for each task so that participants could focus on the presentation
of the results without the difficulty of choosing effective query
terms [19, 35, 36]. We constructed the initial queries based on the
most common query format used by developers, consisting of the
language, a verb, and compliment terms, and verified that the results
contained a solution for the task [16]. The initial query also served
as a control ensuring that participants were given the same initial
set of search results under both treatments. However, participants
were free to make additional searches if they desired.
Phase C: User queries. The final two tasks (T5–T6) simulated scenar-
ios where participants needed to formulate and refine their search
queries, as they would when completing their own development
tasks. As with Phase B, participants were able to revise and search
as many times as they thought necessary to find information that
could help them complete their task. The initial treatment in Phase
C was aligned with Phase B to reduce treatment disorientation.

After each task in Phase B and C, participants were given a
short two-question survey to reflect on the task and to take a break
before continuing. While each task could be solved in multiple
ways, the simplest solution for each involved API calls. Participants
completed the tasks by implementing the task requirements in
individual methods following a test-driven approach using the
provided unit tests to check their solutions. Participants had to
pass all unit tests in the time allotted for each task (Table 1) before
they could progress. Participants were notified when one minute
remained; if one or more tests were still failing once the time had
elapsed, participants were prompted to immediately continue to the
next task.3 The one exception was the tutorial task T0, for which
there was no time limit and participants had to pass all tests.

The study was designed to take between 60 and 90 minutes
to complete, and to be executed entirely within the participant’s
browser. Participants were able to begin the study at any time but
had to complete it within 180 minutes. To begin the study, partic-
ipants followed an anonymous link to our online survey which
provided details about the study including the number of tasks, and
the overall time and JavaScript experience required. If the partic-
ipant consented, they were randomly assigned to one of the four
treatment blocks for the remainder of the study. We automatically
provisioned a GitHub repository, started an online VSCode IDE
(Codespace) instance, and provided participants with instructions
to access this IDE in their browser.

The web-based IDE for the study is shown in Figure 4. The main
Scout view is shown in Figure 4a; participants could enter query
terms (Figure 4i), view or disable automatically-provided context
terms (Figure 4ii), and view the API call signatures (Figure 4iii)
adjacent to their code (Figure 4b). Instructions for each task were

3However, participants could dismiss the prompt and continue working.

Supporting Web-based API Searches in the IDE Using Signatures

a b

c

d

i

ii

iii

Figure 4: Online study environment. Scout is open in the left panel (a) where a participant has entered a search (i) which
includes the selected context terms (ii). Underneath, the search results are summarized as call signatures (iii). The source code
and instructions are shown on the right (b)–(c) with the time remaining in the status bar (d).

Table 1: Task descriptions. Suggested keywords include both
context terms (in bold) and search terms (T0–T4).

Task Time Description/Suggested Keywords

T0 Sum numeric property in object array.
javascript sum object property array

T1 6 min Clone array of objects.
javascript clone array

T2 6 min Sort array of objects by property.
javascript sort array of objects descending

T3 6 min Find object in array with a specific value.
javascript find item in array by value

T4 6 min Localize currency display format.
javascript format currency

T5 7 min Compute a start date given end date + interval.
javascript moment

T6 7 min Create endpoint to serve a PDF report.
javascript express path

shown in a dedicated pane adjacent to the source code (Figure 4c).
Participants could click the Done button once the tests passed (or
the timer expired). Clicking Done replaced the instructions with the
task feedback survey and a link to the next task. The time remaining
was shown in the status bar at the bottom of the window (Figure 4d).

Once participants completed the final task they were directed to an
exit survey about their overall experience and demographics.

3.2 Participants
We advertised the study on a variety of online platforms including
Twitter, Mechanical Turk,4 and Prolific,5 in addition to directly con-
tacting potential participants through personal contacts. Workers
had to demonstrate their development knowledge by successfully
completing a screening questionnaire to be eligible to participate.
Figure 5 outlines our recruitment process for the study.

On Prolific, 455 workers had profiles listing appropriate devel-
opment experience [38], and passed an established pre-screener
which involved answering five basic development questions in a
two-minute survey [10]. As we were not sure how many workers
would actually complete the study, we decided to invite the top 100
qualified workers based on the number of studies they previously
completed on the platform. We also invited one additional worker
who requested to take part out of interest. Ultimately, we received
responses to 66 of the 101 invitations sent. On Mechanical Turk, 413
workers opened our survey. Since Turk does not have a separate
pre-screening and invitation process, workers had to complete the
screening questions at the start of the survey before they could
attempt the study. On both platforms, participants who did not
complete the six study tasks (either successfully or by timing out)
were considered to have withdrawn from the study.

4https://www.mturk.com
5https://www.prolific.co

https://www.mturk.com
https://www.prolific.co

Bradley, Fritz, Holmes

Figure 5: Participant recruitment process.

Before conducting the full experiment, we took steps to ensure
the quality of our experimental procedure. First, we piloted the
study with 20 Mechanical Turk workers. We simplified the tasks
so they could be completed in the allotted time, modified two sur-
vey questions to elicit more direct responses, and added checks
to ensure that participants were actual developers and that they
attempted all of the tasks. Second, we estimated the number of
participants required to observe differences between the two treat-
ments. We calculated that we needed a minimum of 22 participants,
contributing 66 data points over the three tasks in each condition,
using a 𝑡-test power analysis with a power level of 0.8, significance
level of .05, and recommended Cohen’s 𝑑 effect size of 0.5 [11].

In total, we received 40 complete responses from 21 professional
developers, 10 students, and 9 individuals who work with code in
other capacities. Participants (31/40 male, 7/40 female, 2/40 trans-
gender and nonbinary) reported an average of 5.8 ± 5.9 years of
professional experience and 3.4± 4.3 years of JavaScript experience.
The majority of participants came from Prolific (28/40) with the
remaining fromMechanical Turk (7/40), Twitter (1/40), and through
direct contact (4/40). Participants were paid $25.

3.3 Data Collection
The 40 participants completed 240 tasks in total. Participants were
equally assigned to each of the four trial groups, resulting in 20
observations per task (T1–T6) and treatment (control and Scout).
We consider all of these observations in the following analysis,
including 67 cases (34 control + 33 Scout) where participants ex-
ceeded the time allotted for the task. However, we exclude 11 cases
(6 control + 5 Scout) where participants did not open the provided
search interface and focus on the remaining 229 observations.

We recorded participants’ interaction with Scout while com-
pleting the task including time spent on the task, searches made
(incl. context terms), search results (incl. rank, processing time, and
signatures), and navigation of the search results (incl. signatures
expanded, results opened, and page scrolls). The data was stored
in log files committed to participants’ provisioned repositories and
merged into a single database for analysis along with participants’
responses to the post-task questions and the final survey. Our study

instruments, data, and analysis scripts are available in our replica-
tion package.6

4 RESULTS
Scout’s main purpose is to direct developers to the API information
most relevant to their tasks by reducing the number of posts devel-
opers need to investigate. To achieve this objective, Scout uses API
call signatures to represent the information in the search results,
and context terms from the developer’s source code to augment the
search terms and rank the signatures. We investigate these aspects
in comparison to a traditional Google search approach, focusing
on the following research questions:
RQ1 How do API signatures and automatically identified context

terms affect developers’ search for API information?
RQ2 How does Scouts’ API signature representation affect the

way developers locate relevant information?
RQ3 How effectively do developers complete tasks with Scout?
RQ4 What is the developers’ experience using Scout?
To analyze these questions we use a complementary, mixed

methods approach integrating participants’ quantitative interaction
data and qualitative feedback [5]. When assessing significance, we
use Welch’s 𝑡-test, after verifying normality using the Shapiro-Wilk
test, and report normalized effect sizes with Cohen’s 𝑑 .

4.1 User Performance
In this section, we compare participants’ searches, the SO posts and
answers they viewed, and the success and time for completing the
tasks across the 229 cases in the two experimental conditions.

4.1.1 Searching. Overall, participants made significantly fewer
searches when using Scout, going down 19% from 1.6 to 1.3 searches
on average (𝑡 = −1.98, 𝑝 = .025;𝑑 = 0.26). In Phase B, searches de-
creased from 1.3 to 1.1 (15%) and from 2.1 to 1.7 (19%) in Phase C.
One explanation for this decrease could be that the API signature
summaries allowed participants to recognize relevant solutions
faster so they avoided immediately making a new search. Another
explanation could be that Scout’s automatic addition of context
terms to searches led to more suitable initial results requiring par-
ticipants to make fewer refinements to their search queries.

6https://doi.org/10.17605/OSF.IO/DETRW

https://doi.org/10.17605/OSF.IO/DETRW

Supporting Web-based API Searches in the IDE Using Signatures

To investigate the effect of Scouts’ context terms, we examined
the searches participants made during tasks T5 and T6 (Phase C, Fig-
ure 3). We consider the first search participants made during a task
as their initial search and any subsequent searches as refinements
to improve their results. For each task, we ordered participants’
searches by time and manually marked keywords that overlapped
with Scout’s context terms to account for misspellings and abbre-
viations (e.g., js for JavaScript). Of the 152 searches participants
made in total, 83 were under the control condition (with 39 initial
searches, as one participant did not search) and 69 were under Scout
(40 initial searches).

Overall, we found that participants refined a smaller proportion
of their initial searches under Scout when context terms were pro-
vided (14/40 vs 26/39). In the control treatment where no context
terms were included, we found that 32/83 searches included a con-
text term that would have been added by Scout automatically. Of
these 32 searches, participants manually included a context term in
21 of their 39 initial searches and 11 of the 26 searches they refined.
These manually entered terms were distributed across the names
of libraries (60%), programming languages (41%), and API calls (2%)
aligning with the terms Scout suggests. However, some of the terms
Scout suggested did not always align perfectly, with participants
removing a library term in 3 of the 69 searches.

When asked how well the suggested context terms aligned with
those they would include manually, 28/40 (72%) of participants
responded positively. The terms Scout recommended “seemed ap-
propriate and helpful” (P15) and were ones they “would include in
order to narrow the search results” (P24). Participants specifically
mentioned they “liked having the language already embedded” (P28)
and were “glad [they] didn’t have to repeat it each time” (P23).

RQ1 Summary Scout significantly reduces the number of
searches developers perform,with context terms effectively
augmenting developers’ searches.

4.1.2 Locating. Participants successfully completed 47% (54/115)
of the tasks directly from the information provided in Scout’s API
signature summaries. In contrast, participants only solved 2% (2/114)
of the tasks using just the information presented in the Google
results (control). The API signature summaries in Scout provided
quick access to the relevant information, and participants expanded
an average of two signatures and less than one code example. In
nearly half of the cases (24/54), participants also copied information
directly from the signature summary into their code.

With Scout, participants opened an average of 0.8 SO posts to
access further information, significantly fewer than the 2.2 posts
they opened when using the Google results (𝑡 = −6.60, 𝑝 < .001;𝑑 =

0.87). This 64% reduction in navigation cost can partly be attributed
to the information and visual cues included in the API signature
summaries that made it “easy to find a solution” (P1, P2, P11, P17,
P24, P26, P36, P39). The check mark and most-upvoted icons helped
participants “decide where to click first” (P15, P39), while the usage
and code tabs specifically made locating a solution easier (P6, P17,
P25, P23). Participants also liked “being able to see function signatures
of answers” (P13), allowing them to compare “different solutions right

in the results page..looking there instead of clicking into every link”
(P25). In contrast, the Google results were not always helpful in
locating solutions (P9, P16, P17, P24) since the information might
be “not in context and not necessarily very relevant” (P4). In these
cases, participants instead used the title (P4, P39) to “click into the
SO links and read the thread” (P9) in the full-page view (P4, P10).

Since there are several answers per post that developers might
go through to locate a solution, we also examined the number of
answers developers looked at. We considered an answer as viewed
when at least half of it was visible in the search interface for at
least one second based on scroll events. Overall, study participants
viewed an average of 2.5 answers per task when using signature
summaries, significantly fewer than the 5.4 answers with Google
results (𝑡 = −2.82, 𝑝 = .002;𝑑 = 0.37). When focusing solely on the
times a participant opened a post, the number of answers looked at
is almost the same in both conditions, with 3.2 answers read per
opened post for tasks with Scout and 3.1 answers with Google (no
significant difference, 𝑡 = 0.19, 𝑝 = .577;𝑑 = .02).

When opening a post, Scout enabled participants to jump directly
to the answer corresponding to a specific API signature via a link,
rather than examining each answer starting from the top of a post.
Participants used this link for 8 of the 61 (13%) tasks where they
opened a post, viewing an average of 1.8 answers once the post
was open, including the linked answer.

RQ2 Summary API signature summaries make relevant
information directly accessible so that developers open
significantly fewer SO posts and look through significantly
fewer answers.

4.1.3 Task Completion. Overall, we found that there was no sig-
nificant difference in participants’ success rate or completion times
between the two conditions. In terms of success rate, we marked a
task as successful if the participant’s solution passed all of the pro-
vided unit tests. While participants were slightly more successful
when using API signatures, completing 90/115 tasks compared to
the 85/114 tasks when using Google results, the difference was not
significant (Two-Proportions Z-Test 𝜒2 = 0.2537, 𝑑 𝑓 = 1, 𝑝 = .307).
There was also no significant difference when excluding cases that
exceeded the allotted time.

In cases where participants were unsuccessful, we coded the
feedback they provided to understand their main challenges under
the two conditions. When using Google results (without context
terms), participants’ main issue was “finding the right search terms”
(P14; P10, P17, P20, P24, P27). When using Scout’s API signatures,
“finding a relevant code sample seemed straightforward” but partic-
ipants wasted time resolving variable name typos (P1, P26) and
not using the signatures sooner (P25; P33). Despite their similar
performance under the two treatments, 36/40 participants indicated
a strong preference for API signatures, as P39’s feedback illustrates:
“[Google] was missing the organized function [API] call signatures
like the previous tasks. I liked those!”.

Regarding completion time, participants were generally able
to complete the tasks in the allotted time. We measured partici-
pants’ completion times from the start of the task to when they
clicked done, including the time they spent comprehending the task

Bradley, Fritz, Holmes

and implementing a solution (Figure 6). While tasks were overall
completed slightly faster on average with the control condition
(4m18s) than with Scout (4m24s), a two-way repeated measures
ANOVA, treating the task as a blocking factor, showed that the treat-
ment had no significant effect on participants’ completion times
(𝐹 (1, 227) = 0.06, 𝑝 = .81). Note that we are missing the completion
time for one participant for T6 due to technical issues. In 67 cases,
participants exceeded the allotted time, including four large outliers
in T1 (19m6s), T2 (27m22s), T3 (17m32s), and T6 (13m32s), with 34
cases in the control condition and 33 with Scout. Ultimately, 6 of
the 34 cases in the control condition were successfully completed
and 8 of the 33 using Scout. Our results remained consistent when
excluding these cases: participants took 3m0s on average for the
control condition and 3m6s for Scout, and the ANOVA showed no
significant difference.

T1

T2

T3

T4

T5

T6

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Duration (Minutes)

Ta
sk

Treatment

Control
Signature

Figure 6: Distribution of task completion times. For readabil-
ity, we do not show the four large outliers.

RQ3 Summary Despite the significant reduction in infor-
mation when using API signature summaries, there is no
significant effect on developers’ task success or completion
time between conditions.

4.2 Tool Performance
It is important that search tools respond quickly with useful sugges-
tions that help developers successfully complete their tasks. Here
we report on Scout’s signature ranking and processing latency.

4.2.1 Conciseness and Ranking. Overall, Scout provided partici-
pants with succinct representations of the information available in
their search results by surfacing task-relevant API signatures. The
SO posts in the search results for the 69 searches participants made
using Scout in T5 and T6 contained an average of 30k words and 292
LoC with 122 signatures across 26 answers. Instead of participants
manually opening posts and looking through the answers for the
appropriate API information, Scout provided a concise overview,
summarizing the results into 23 signatures using 86 words and 23
LoC on average.

To examine how effectively Scout ranks API signatures within
each SO post, we manually compared participants’ solutions with
the API signatures shown by Scout for the last search made by each
participant during T5 and T6. For these searches, there were 15
signatures on average in each post from which Scout selected the 3
most relevant considering the participant’s code. We found that 31%
of participants’ solutions used the first signature, 64% used one of
the first 3 signatures, and 97% used one of the first 10. For some tasks,
participants were impressed with the signature ranking noting that
“the first item..had the answer I needed” (P32; P20). However, the
ranking was not always perfect (P9, P28, P29, P31, P35) leading
participants to examine signatures that were not always relevant
(P5, P10, P32). In these cases, signatures can helpmitigate the impact
of ranking by enabling developers to directly assess the relevance
of the results without opening the full SO post: “It was really easy
to find the answer, even though it wasn’t the first one because [the
signatures] were nicely collapsed. The example also helped” (P31).
Participants also suggested that the ranking could be improved by
incorporating the number of upvotes (P27) and answer recency
(P8, P24) into the ranking algorithm, and prioritizing signatures
with shorter code examples (P26, P32), or those meeting technical
requirements such as the language revision (P20).

4.2.2 Latency. Scout creates the API signature summaries by pro-
cessing the first 10 SO posts returned within Google’s search results.
Since this processing happens in real time and can impact Scout’s
usability, we analyzed the latency it adds to the Google search re-
sults. We found that Scout took an average of 4.4s to display the
first search result and an average of 5.0s for Google’s top-ranked
result, on the 8-core virtual machines used during the study. While
this latency is below the 10s tolerable wait time for web-based in-
formation retrieval tasks, it is longer than the sub-2s ideal wait time
[27]. According to participants, the latency was not a major factor
affecting Scout’s usability and is partly offset by reducing naviga-
tional overhead (Section 4.1.2), which may result in an overall faster
“experience” (P15). However, some participants did mention that
the “search could be faster” compared to Google’s highly-optimized
search engine (P5, P8, P11, P18).

4.3 User Experience
For developers to actually find solutions using a search tool, it must
be usable and support the types of searches developers make during
their tasks. We examine these aspects below.

4.3.1 Usability. Participants indicated that Scout has good usability,
assigning it an average system usability score of 78 (a score of 70 is
average) [3]. They found it “helpful to have [the results] in the IDE”
(P39) so they did not “have to leave the [..] code” (P15) and “loved
that [they] didn’t have to switch tabs/windows” (P19). However, one
usability challenge was the limited space available in the IDE (P4,
P6, P8, P11, P16, P18, P23, P29, P37) which made the interface “a bit
too busy” (P28) and “slightly harder to navigate” (P13).

When comparing the API signature summaries with standard
Google result summaries, participants generally found that signa-
tures were quicker to scan for useful solutions saving them time
and mental energy processing full SO posts. However, participants
noted that with signatures it could be “a little tough to know which

Supporting Web-based API Searches in the IDE Using Signatures

result to use [from] the initial view” (P15) without more documenta-
tion (P5, P6, P13, P23). In contrast, the textual content of standard
Google results resized to fit the space available in the IDE but re-
quired additional navigation to “dig” through code, comments, and
links to get an actual solution (P20, P23).

4.3.2 Search Suitability. Participants indicated that signature sum-
maries are best suited to searches involving basic tasks where they
are familiar with the overall approach and need to recall details
about common API calls such as syntax using code examples. How-
ever, they are not as useful for searches involving specific or complex
tasks that require a detailed understanding of possible solutions us-
ing multi-line code examples, or for tasks that are conceptual in
nature. Participants reported that 58% of their day-to-day searches
are for basic tasks while 38% are for complex tasks. To better sup-
port these two types of searches, participants suggested “having
both [summaries] at once” (P15, P31) by adding full API signatures
or even “just function names” (P20, P23) to the Google results.

4.3.3 IDE Integration. Participants were generally positive about
Scout’s integration into the IDE, but also suggested some ideas to
further the integration. Concretely, participants suggested adding
a “copy” button (P28, P33) that “drops the [summary] code into the
source file” (23), and altering the summary code to match the source
code; e.g., by “matching the parameter [names]” (P31) and “high-
lighting variables” (P16). To maximize the limited window space,
participants suggested using “[line wrapping] for signature sum-
maries to reduce horizontal scrolling” (P24), and providing “tooltips
to view text snippets related to code” (P4, P24) with an option to
“expand the Scout window or open the links in new windows” (P18).

RQ4 Summary Participants valued Scout’s concise API
signature presentation and the tight IDE integration that
speeds up scanning and locating solutions. Scout is par-
ticularly suitable for basic search tasks comprising more
than half of developers’ day-to-day work.

5 DISCUSSION
In this section we discuss some challenges and solutions for extend-
ing Scout to developers’ workflows in practice.

5.1 Contextualizing Developers’ Searches
Constructing effective queries can be difficult, leading developers
to invest time and mental effort examining results which are not
relevant to their task. We found that many of the terms developers
include in their queries to filter the search results can be automati-
cally extracted from their source code and, by presenting the terms
explicitly, enable developers to actively guide the search process.
Participants found the terms that Scout included in their searches
aligned with their expectations and even thought that additional
terms, such as variable types, and terms from specially formatted
comments like JSDoc (P4, P26, P28, P37), would be helpful. How-
ever, they acknowledged that it would not always “reasonable [..]
when [the terms] don’t show up in code” (P31). Some participants
were concerned that Scout might “infer too [many terms]” (P15)
from longer functions that could introduce noise into their searches

(P8). Future approaches could automatically include the 2–3 terms
closest to the developer’s cursor and offer remaining terms through
autocomplete. Participants also thought that providing “suggestions
like Google’s ‘Did you mean...?’” (P19) could help them “search for
similar problems” (P2).

5.2 Alternative API Oracles
The focus of our experiment was to study the effect of using API
signatures to orient developers within their search results and help
them locate a solution more directly, independent of where the
API signature information was derived from. While there are ex-
isting approaches that share similar goals, such as Prompter [33],
PostFinder [37], and Biker [17], they focus on improving the under-
lying search results through custom search engines. Instead, Scout
focuses on aligning the presentation of the information contained
within a set of search results to the developer’s task. By decoupling
the presentation of search results, Scout works on top of any search
engine providing SO results. Due to its ubiquity, quality of results,
and ease of use, we chose to use Google as our baseline search
provider within Scout.

Tools based on LLMs, such as ChatGPT and Copilot, are another
source of API information but, similar to web search, require devel-
opers to either craft effective queries or look through the responses
to identify relevant information. In the case of ChatGPT’s conver-
sational interface, developers often have to try multiple queries to
obtain a complete solution for their task [28]. This process adds
overhead as developers have to read the frequently verbose, and
structurally variable, responses and think about how to refine their
queries to elicit the desired information [18]. Copilot avoids queries
by generating multiple code solutions from cues in the developer’s
source code. However, the code-only representation of solutions
makes them difficult for developers to fully assess, which is im-
portant since the solutions can be wrong in subtle ways [30]. Fur-
ther, the size of the solutions, and Copilot’s autocomplete interface,
which provides one solution at a time, can make it hard for devel-
opers to efficiently compare alternative solutions. The presentation
system used by Scout can be applied to existing LLM tools to en-
able their recommendations to be presented in a way that is better
tailored to the developer’s task.

5.3 Summarizing Task-Centric Results
Text snippets, like the ones typically used by web search engines,
can be generated robustly but have inherent limitations when sum-
marizing developer-specific results such as being “out of context”
(P4), containing “unnecessary details” (P17), and preventing develop-
ers from “easily seeing and comparing answers” (P15). For searches
about APIs, we found that signatures address these limitations by
enabling developers to locate solutions for their tasks more directly.
To make the summaries easier to navigate, participants suggested
including the age (P10), number of votes, and source answers for
each signature (P13, P24), and always providing the full signature
“showing what parameters the function accepts, rather than just based
on its usage in that specific answer” (P38). Participants also sug-
gested removing the Usage tab (P23), or defaulting to the Code tab
(P29) to “save an extra click” (P19). For code examples, participants
wanted “longer documentation” or a “small summary” (P5, P36) with

Bradley, Fritz, Holmes

“comments in the code” (P39, P7) and links to the function’s official
documentation (P10, P13, P36).

While signatures can help developers save time by directly sur-
facing the API information contained in their search results, the
latency from processing the search results in real time can dimin-
ish Scout’s overall time savings. The primary factors contributing
to Scout’s latency are fetching the posts from SO and processing
the code examples into ASTs. In future work we will examine ap-
proaches to minimize real time processing latency, for example,
by requesting posts directly through the SO API rather than using
proxied network requests, and by caching the code example ASTs.

5.4 Completing Tasks
We designed Scout to reduce cognitive load and help developers
focus on their tasks. However, it is difficult to reliably measure
these aspects directly so we instead examined completion times
and success rates, which are common measures when comparing
alternative tool designs. We did not find significant differences in
completion time or success rate between the Google and Scout
conditions. On one hand, we view this as a positive result since we
compared Scout’s novel interface, which participants had to learn
while completing actual development tasks, with Google, one of the
most commonly used web search tool by developers. On the other
hand, we expect Scout could be faster in practice by enabling devel-
opers to search directly in the IDE, avoiding the cognitive overhead
associated with the context switches and windowmanagement that
occur when using a separate browser application. For this study, we
compared both conditions within the IDE to avoid any confounds
and privacy concerns outside of our main evaluation of Scout’s API
signatures.

5.5 Threats to Validity
We describe the limitations of our study below.

Internal Validity. This study uses a within-subject design which
introduces confounds such as carryover and ordering effects. We
randomly assigned participants to one of four trial groups, following
a balanced Latin Square design, to help mitigate these effects, and
included breaks to limit participant fatigue.

Before starting the study, we conducted a power analysis to esti-
mate the number of participants necessary to observe statistically
significant results. While we used the recommended effect size of
𝑑 = 0.5, our post-hoc power analysis indicates the actual effect
size was much smaller at 𝑑 = 0.13 limiting our interpretation of
success rate and completion time. By using many shorter tasks,
participants’ overall completion times may have been dominated
by aspects of the task other than searching, including reading in-
structions, comprehending code, and testing solutions.

External Validity. The results from this study may not generalize
to all developers and tasks. We chose to run the study primarily
on paid platforms to recruit a large number of diverse participants
who would have been difficult to contact directly. However, by
conducting this study on paid platforms, participantsmay have been
incentivized to misrepresent their ability or otherwise complete the
study differently than expected (e.g., by working onmultiple studies
simultaneously). We used a validated questionnaire to prescreen

participants, and required participants to successfully complete the
tutorial task and attempt all of the tasks before being compensated.

The tasks we used for the study were designed to represent
individual components of larger features found in real software
systems. We chose to use short tasks, presented in isolation, to pro-
vide more comparison points and to help ensure participants could
make progress while keeping the overall study duration reasonable.
We intended this design to match how developers decompose their
tasks and search for solutions in practice.

6 RELATEDWORK
Developers perform two steps to locate solutions on the web: first,
they generate search terms and then they navigate among the
result pages. Prior work has generally approached these steps inde-
pendently by creating tools that help developers either construct
search queries using code terms in the IDE or navigate the result
pages by transforming their content using different summarization
techniques in the web browser.

6.1 Constructing Search Queries
Coming up with effective search terms is difficult and often requires
developers to refine their terms after investigating the results, which
can take considerable time [35, 50]. One way to minimize this re-
finement phase is to use keywords from the text in the IDE, such as
source code and error messages, to generate queries automatically.
An early example of this approach is Strathcona, which automati-
cally recommends API usage examples from an oracle based on the
structural context of the source code selected by a developer in their
IDE [15]. Pycee and Maestro use stack traces to generate searches
to help developers locate information about program errors [23, 43].
Fishtail, Reverb, and Prompter use the code entities developers
have recently interacted with to recommend previously viewed
web pages ([40, 41]) and relevant SO posts ([33]). StackInTheFlow,
PostFinder, FaCoY, and Bing Developer Assistant generate
searches on-demand from the code selected by developers in the
IDE [13, 20, 37, 49].

However, these approaches rely on custom search indexes that
may not always have the most up-to-date information (e.g., SO
data dumps). It can also be difficult for developers to guide these
approaches using their knowledge of the task since the search
queries are generated and run transparently. Instead, Scout offers
code terms that developers can use to augment their queries, similar
to Blueprint [7], allowing them to actively control the results from
standard search engines with minimal effort.

6.2 Transforming Search Results
Generating effective queries is only the first part of locating solu-
tions on the web: developers still need to find the specific kinds of
information relevant to their task from their search results, such as
explanations and examples of API usage [16]. Unfortunately, find-
ing APIs within the search results can be difficult when developers
are only given limited information about the result such as the title
(e.g., Google, Prompter, PostFinder).

One way to help developers effectively navigate the results is
to annotate them with developer-specific information. Mica and
Assieme extract the function and type names, respectively, from

Supporting Web-based API Searches in the IDE Using Signatures

search result pages so that developers can easily assess and refine
the results [14, 42]. Libra adds a plot to Google’s search result
page visualizing results according to the number and diversity of
overlapping code terms, helping guide developers toward pages
with more details or alternative solutions [34]. A tool by Liu et
al. identifies latent developer needs within SO questions to help
developers identify posts relevant to their task [22].

Alternatively, approaches can provide a summary of the results
so developers do not need to examine each result individually.
Example Overflow presents the top 5 accepted code examples
from SO search results in a single view allowing developers to eas-
ily compare them [48]. While such code examples can be helpful,
they can be time-consuming to read and may not reflect common
usage. Exempla Gratis identifies common usage patterns across
multiple code examples to identify the idiomatic usage of developer-
specified API methods [4]. Instead of code examples, AnswerBot
focuses on textual content to extract a diverse summary across
answers to give developers an overview of the entire SO post [46].

Some of these approaches have focused on summarizing API in-
formation. CAPS summaries SO posts describing API issues to help
developers improve the API design [2], while a tool by Campos et
al. identifies highly-voted answers across SO posts demonstrating
how to use an API [8]. Opiner provides sentiment about Java pack-
ages found in SO code examples based on the answer text to help
developers decide between alternative APIs. Biker uses heuristics
to extract API entities from hyperlinks and code tags in the top-50
SO posts related to a developer’s search by comparing them to a
curated oracle of Java API names. The entities are mapped to their
fully qualified name and ranked by frequency and similarity of the
post title with the search terms. The API description, a list of similar
questions, and code examples are presented in a dedicated browser
window using plain text [17].

While we share a similar objective with Biker, our approach dif-
fers in several key ways. We focus on presenting APIs interactively
in the IDE where developers can compare different options before
expanding detailed usage examples. Our approach works in real
time using Google search results avoiding the need to construct
and update a custom search engine. Finally, we consider where the
extracted APIs will be used in the developer’s code when making
recommendations.

7 CONCLUSION
In this paper we introduced Scout, a tool to help developers locate
API information within their search results by extracting, ranking,
and presenting compact API signatures directly within the IDE.
Scout works on top of existing search engines by incorporating
terms found within the developer’s source code to augment their
search queries and adjust the search results. In a controlled experi-
ment with 40 developers, we found that presenting search results as
API signatures enabled developers to easily compare different APIs
and interactively drill down to details when needed, significantly
reducing the amount of information they examined. Participants
were able to complete API search tasks with Scout’s novel interface
while maintaining similar task completion times and success rates.

Our findings indicate that the way information about source
code is presented can affect the amount of effort required for devel-
opers to complete their tasks. Code context provides an effective
mechanism for tailoring the representation of developer’s informa-
tion resources to their task. In the case of API search tasks, an API
signature representation helps developers assess the relevance of
search result pages and, for many searches, provides exactly the
required information.

REFERENCES
[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. 2017. What Do Developers

Use the Crowd For? A Study Using Stack Overflow. IEEE Software 34, 2 (March
2017), 53–60.

[2] Md Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K. Roy, and Kevin A.
Schneider. 2020. CAPS: A Supervised Technique for Classifying Stack Overflow
Posts Concerning API Issues. Empirical Software Engineering (EMSE) 25, 2 (March
2020), 1493–1532.

[3] Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining What Indi-
vidual SUS Scores Mean: Adding an Adjective Rating Scale. Journal of Usability
Studies 4, 3 (May 2009), 114–123.

[4] Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chan-
dra. 2020. Exempla Gratis (E.G.): Code Examples for Free. In Proceedings of the
Joint Meeting on European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering (ESEC/FSE). 1353–1364.

[5] Patricia Bazeley. 2018. Complementary Analysis of Varied Data Sources. In
Integrating Analyses in Mixed Methods Research. 91–125.

[6] Nick C. Bradley, Thomas Fritz, and Reid Holmes. 2022. Sources of Software
Development Task Friction. Empirical Software Engineering (EMSE) 27, 7 (Sept.
2022), 34 pages.

[7] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-Centric Programming: Integrating Web Search into the Development
Environment. In Proceedings of the Conference on Human Factors in Computing
Systems (CHI). 513–522.

[8] Eduardo C. Campos, Lucas B. L. de Souza, andMarcelo deA.Maia. 2016. Searching
Crowd Knowledge to Recommend Solutions for API Usage Tasks. Journal of
Software: Evolution and Process 28, 10 (July 2016), 863–892.

[9] Joseph Chee Chang, Nathan Hahn, Yongsung Kim, Julina Coupland, Bradley
Breneisen, Hannah S Kim, John Hwong, and Aniket Kittur. 2021. When the
Tab Comes Due:Challenges in the Cost Structure of Browser Tab Usage. In
Proceedings of the Conference on Human Factors in Computing Systems (CHI).
1–15.

[10] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and Matthew Smith.
2021. Do You Really Code? Designing and Evaluating Screening Questions for
Online Surveys with Programmers. In Proceedings of the International Conference
on Software Engineering (ICSE). 537–548.

[11] Tore Dybå, Vigdis By Kampenes, and Dag I. K. Sjøberg. 2006. A Systematic
Review of Statistical Power in Software Engineering Experiments. Information
and Software Technology 48, 8 (2006), 745–755.

[12] G. Gao, F. Voichick, M. Ichinco, and C. Kelleher. 2020. Exploring Programmers
API Learning Processes: Collecting Web Resources as External Memory. In
Proceedings of the Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 1–10.

[13] Chase Greco, Tyler Haden, and Kostadin Damevski. 2018. StackInTheFlow:
Behavior-Driven Recommendation System for Stack Overflow Posts. In Proceed-
ings of the International Conference on Software Engineering (ICSE). 5–8.

[14] Raphael Hoffmann, James Fogarty, and Daniel S. Weld. 2007. Assieme: Finding
and Leveraging Implicit References in a Web Search Interface for Programmers.
In Proceedings of the Symposium on User Interface Software and Technology (UIST).
13–22.

[15] Reid Holmes and Gail C. Murphy. 2005. Using structural context to recommend
source code examples. In Proceedings of the International Conference on Software
Engineering (ICSE). 117–125.

[16] Andre Hora. 2021. Googling for Software Development: What Developers Search
For and What They Find. In Proceedings of the International Conference on Mining
Software Repositories (MSR). 317–328.

[17] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
Method Recommendation withoutWorrying about the Task-API Knowledge Gap.
In Proceedings of the International Conference on Automated Software Engineering
(ASE) (ASE 2018). 293–304.

[18] Samia Kabir, David N. Udo-Imeh, Bonan Kou, and Tianyi Zhang. 2023. Who
Answers It Better? An In-Depth Analysis of ChatGPT and Stack Overflow Answers
to Software Engineering Questions. arXiv:2308.02312

[19] Katja Kevic and Thomas Fritz. 2014. Automatic Search Term Identification
for Change Tasks. In Proceedings of the International Conference on Software

https://arxiv.org/abs/2308.02312

Bradley, Fritz, Holmes

Engineering (ICSE). 468–471.
[20] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques

Klein, and Yves Le Traon. 2018. FaCoY - A Code-to-Code Search Engine. In
Proceedings of the International Conference on Software Engineering (ICSE). 946–
957.

[21] Jiakun Liu, Sebastian Baltes, Christoph Treude, David Lo, Yun Zhang, and Xin Xia.
2021. Characterizing Search Activities on Stack Overflow. In Proceedings of the
Joint Meeting on European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering (ESEC/FSE). 919–931.

[22] Mingwei Liu, Xin Peng, Andrian Marcus, Shuangshuang Xing, Christoph Treude,
and Chengyuan Zhao. 2021. API-Related Developer Information Needs in Stack
Overflow. Transactions on Software Engineering (TSE) 48, 11 (Nov. 2021), 4485–
4500.

[23] Sonal Mahajan, Negarsadat Abolhassani, and Mukul R. Prasad. 2020. Recom-
mending Stack Overflow Posts for Fixing Runtime Exceptions Using Failure
Scenario Matching. In Proceedings of the Joint Meeting on European Software Engi-
neering Conference and the Symposium on the Foundations of Software Engineering
(ESEC/FSE). 1052–1064.

[24] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: Finding Relevant Functions and Their Usage. In Proceedings of
the International Conference on Software Engineering (ICSE). 111–120.

[25] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. The Plague Doctor:
A Promising Cure for the Window Plague. In Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). 182–185.

[26] Tamara Munzner. 2014. Visualization Analysis and Design. AK Peters/CRC press,
Chapter 14.

[27] Fiona Fui-Hoon Nah. 2004. A Study on Tolerable Waiting Time: How Long Are
Web Users Willing to Wait? Behaviour & Information Technology 23, 3 (May
2004), 153–163.

[28] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2023. In-IDE Generation-based Information Support with a Large Language
Model. arXiv:2307.08177

[29] SeyedMehdi Nasehi, Jonathan Sillito, FrankMaurer, and Chris Burns. 2012. What
Makes a Good Code Example?: A Study of Programming Q&A in StackOverflow.
In Proceedings of the International Conference on Software Maintenance (ICSM).
25–34.

[30] Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copi-
lot’s code suggestions. In Proceedings of the International Conference on Mining
Software Repositories (MSR). 1–5.

[31] Cole S. Peterson, Jonathan A. Saddler, Natalie M. Halavick, and Bonita Sharif.
2019. A Gaze-Based Exploratory Study on the Information Seeking Behavior
of Developers on Stack Overflow. In Proceedings of the Conference on Human
Factors in Computing Systems (CHI). 1–6.

[32] Jan Pilzer, Raphael Rosenast, André N. Meyer, ElaineM. Huang, and Thomas Fritz.
2020. Supporting Software Developers’ Focused Work on Window-Based Desk-
tops. In Proceedings of the Conference on Human Factors in Computing Systems
(CHI). 1–13.

[33] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-confident
Programming Prompter. In Proceedings of the International Conference on Mining
Software Repositories (MSR). 102–111.

[34] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea Mocci, Rocco
Oliveto, Massimiliano Di Penta, and Michele Lanza. 2017. Supporting Soft-
ware Developers with a Holistic Recommender System. In Proceedings of the

International Conference on Software Engineering (ICSE). 94–105.
[35] Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayani, Federico Andrés

Lois, Sebastián Fernandez Quezada, Christopher Parnin, Kathryn T. Stolee, and
Baishakhi Ray. 2018. Evaluating How Developers Use General-Purpose Web-
Search for Code Retrieval. In Proceedings of the International Conference onMining
Software Repositories (MSR). 465–475.

[36] Mohammad M. Rahman, Chanchal K. Roy, and David Lo. 2019. Automatic Query
Reformulation for Code Search Using Crowdsourced Knowledge. Empirical
Software Engineering (EMSE) 24, 4 (Aug. 2019), 1869–1924.

[37] Riccardo Rubei, Claudio Di Sipio, Phuong T. Nguyen, Juri Di Rocco, and Davide
Di Ruscio. 2020. PostFinder: Mining Stack Overflow Posts to Support Software
Developers. Information and Software Technology 127 (Nov. 2020), 16 pages.

[38] Daniel Russo. 2022. Recruiting Software Engineers on Prolific. In International
Workshop on Recruiting Participants for Empirical Software Engineering. 2 pages.

[39] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. HowDevelopers
Search for Code: A Case Study. In Proceedings of the International Symposium on
Foundations of Software Engineering (FSE). 191–201.

[40] Nicholas Sawadsky and Gail C. Murphy. 2011. Fishtail: From Task Context to
Source Code Examples. In Proceedings of the Workshop on Developing Tools as
Plug-ins. 48–51.

[41] Nicholas Sawadsky, Gail C. Murphy, and Rahul Jiresal. 2013. Reverb: Recom-
mending Code-related Web Pages. In Proceedings of the International Conference
on Software Engineering (ICSE). 812–821.

[42] J. Stylos and B.A. Myers. 2006. Mica: A Web-Search Tool for Finding API Com-
ponents and Examples. In Proceedings of the Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 195–202.

[43] E. Thiselton and C. Treude. 2019. Enhancing Python Compiler Error Messages
via Stack. In Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1–12.

[44] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,
Yijian Wu, and Yang Liu. 2020. An Empirical Study of Usages, Updates and
Risks of Third-Party Libraries in Java Projects. In Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). 35–45.

[45] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What Do Developers Search for on the Web? Empirical
Software Engineering (EMSE) 22, 6 (Dec. 2017), 3149–3185.

[46] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: Auto-
mated Generation of Answer Summary to Developers’ Technical Questions. In
Proceedings of the International Conference on Automated Software Engineering
(ASE). 706–716.

[47] Annie T. T. Ying and Martin P. Robillard. 2014. Selection and Presentation
Practices for Code Example Summarization. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE). 460–471.

[48] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai. 2012. Example Overflow:
Using Social Media for Code Recommendation. In Proceedings of the International
Workshop on Recommendation Systems for Software Engineering (RSSE). 38–42.

[49] Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik, Scott
Ge, and Wenxiang Hu. 2016. Bing Developer Assistant: Improving Developer
Productivity by Recommending Sample Code. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE). 956–961.

[50] Neng Zhang, Qiao Huang, Xin Xia, Ying Zou, David Lo, and Zhenchang Xing.
2022. Chatbot4QR: Interactive Query Refinement for Technical Question Re-
trieval. Transactions on Software Engineering (TSE) 48, 4 (April 2022), 1185–1211.

https://arxiv.org/abs/2307.08177

	Abstract
	1 Introduction
	2 Approach
	2.1 Contextualizing Developer's Searches
	2.2 Identifying Relevant Signatures
	2.3 Integrating Results Within the IDE

	3 Methodology
	3.1 Experimental Design
	3.2 Participants
	3.3 Data Collection

	4 Results
	4.1 User Performance
	4.2 Tool Performance
	4.3 User Experience

	5 Discussion
	5.1 Contextualizing Developers' Searches
	5.2 Alternative API Oracles
	5.3 Summarizing Task-Centric Results
	5.4 Completing Tasks
	5.5 Threats to Validity

	6 Related Work
	6.1 Constructing Search Queries
	6.2 Transforming Search Results

	7 Conclusion
	References

