
Type of Submission: Tutorial

Title: Jazz Tutorial – Using RTC for a group project
Subtitle: An Introduction to Teams, Work Items, Source Control and Iteration Plans in Rational

Team Concert.

Keywords: work item, team, source control, component, iteration plan, sprint, backlog

Given: Thomas
Family: Fritz
Job Title: Postdoctoral Researcher
Email: fritz@cs.ubc.ca
Bio: Thomas Fritz received the Diplom degree in computer science from the Ludwig-Maximilians-
University Munich, Germany, in 2005. He received the PhD degree in computer science from the
University of British Columbia in 2011. He has experience working as an intern with several companies
including the IBM OTI labs in Zurich and Ottawa where he worked with the Jazz work item and source
control teams. He has taught the undergraduate introductory course to software engineering in the
department of computer science at UBC and is currently a postdoctoral researcher at UBC. His research
focuses on how to help software developers better manage the information and systems on which they
work.

Company: University of British Columbia

Given: Meghan
Family: Allen
Job Title: Lecturer
Email: meghana@cs.ubc.ca
Bio: Meghan Allen received her BSC and MSc degrees in computer science from the University of British
Columbia (UBC) in 2001 and 2006. She has experience working as a software developer where she used
team coordination tools "in the wild". Since 2007 she has been a lecturer for the department of computer
science at UBC where she has taught a variety of undergraduate courses including the introductory course
in software engineering which uses RTC.

Company: University of British Columbia

Abstract:
Software engineering comprises activities such as breaking down a development project into manageable
tasks, creating and changing source code, communicating with fellow developers and managing teams.
The Rational Team Concert tool (RTC) supports many software engineering activities and thus can form
the cornerstone of your project development. In the following, we will explore some of the major
concepts of RTC, such as work items, teams, source control, and iteration plans, and how these concepts
can be used in developing a small software project using an agile process in a class setting.

Jazz Tutorial – Using RTC for a group project – Part I

Introduction
The Jazz platform, and the associated Rational Team Concert tool (RTC), can form the

cornerstone of your project development. This tool embodies a modern approach to

software engineering and, as such, is a very good way to learn, hands-on, the important

concepts of software engineering.

Although you might be familiar with a lot of the concepts present in RTC, learning to use

a new software tool is never easy. For example, the specific nomenclature of RTC will

sometime differ from the one you are used to.

The goal of this tutorial is to introduce Jazz and RTC by focusing on a small class

project. It is in no way a complete documentation of the tool, and at some point you will

probably need to dig deeper in order to find answers to your questions.

Going beyond this tutorial
There are lots of ways to learn more about Jazz and RTC. A lot of additional resources

are available on the Jazz website. Some of them require that you created an account. To

check the documentation, just go to http://jazz.net, login and select the Learn link from

the menu. For documentation about Eclipse, check http://eclipse.org.

In case you have looked around and are still unable to find an answer to your question,

you can always post a question on one of the news forums on http://jazz.net.

Following this tutorial
Pay particular attention to everything that is bold. It either describes a very important

concept or an action you need to take in order to successfully complete this tutorial.

http://jazz.net/
http://eclipse.org/
http://jazz.net/

1 – Installation and setup

Introduction
Chapter 1 of this tutorial will guide you through the process of setting up and running

RTC for the first time.

RTC and Eclipse

Eclipse, which you may have used before, is a very good development platform for your

Java projects. However, Eclipse is more than a code editor; it’s an entirely open platform

that can be extended by third-party developers. Rational Team Concert is exactly that: an

Eclipse expansion provided by IBM Rational in order to facilitate and coordinate team

work.

As opposed to typical Eclipse plug-ins, however, RTC includes so many additions and

customizations that it cannot be installed on top of your current version of Eclipse.

Instead, you will need to download and install it from the IBM Jazz website and what you

will get is a complete bundle that includes Eclipse, the typical Java development plug-ins,

and all the plug-ins required for RTC to run.

Extending and upgrading your new Eclipse

Once you get your new Eclipse (RTC), you may be tempted to extend it with all your

favourite plug-ins, or to upgrade it to the latest version. Although this can be done, it is

not as simple as with a standard Eclipse installation because IBM uses customized

versions of various standard packages. These customized packages live in a different

directory and cannot be overridden. In other words, extending or upgrading RTC’s

version of Eclipse is not as easy as extending or upgrading Eclipse. In all cases, the

bundled version of Eclipse has all the tools we will need in this tutorial.

Installing RTC on your own machine
This section will show you how to download and install Rational Team Concert on your

home PC or your laptop. We strongly recommend that you do this since it will allow you

to participate on the project from home. It will also let you enjoy one great aspect of

source control, and of RTC in particular, namely the fact that it can automatically

replicate your entire development environment across the various computers you use. In

all cases, you will need to join the Jazz program if you want to be able to browse the

online documentation and download the RTC client.

Joining the Jazz program

If you want to download Rational Team Concert, or even if you only want to browse the

associated documentation, then you will need to register on the Jazz Community Site.

To do this, go to http://jazz.net and click the “Register now!” button on the right-hand

side and follow the entire procedure.

http://jazz.net/

Downloading the Jazz client (version 2.0.0.2iFix5)

Once you have registered and logged in, point your browser to the following download

page: https://jazz.net/downloads/rational-team-concert/releases/2.0.0.2iFix5 (in case you

are connecting to a server that has a newer version installed, make sure to download a

client version that is compatible).

The jazz download pages have a history of moving around, so if the link does not work,

start from http://jazz.net, login and follow the “downloads” link on the right side.

Make sure that you are on the page for the version of Rational Team Concert that is

compatible with your server (in our case 2.0.0.2 iFix5). You must not download any

other version of RTC as it might not be compatible with the Jazz server.

Select from Windows or Linux from the list just under “Features” on the left hand side of

the page. Then, select “Download” for Express-C. You can then accept the license

agreement and your download should start. If you use a Mac, I think you want the “Client

for Eclipse IDE” that is listed on the “All Downloads” page under “Incubators”. Again,

make sure you’re still on the Rational Team Concert site of the version your server is

compatible with, since newer versions won’t necessarily be consistent with your server.

Installing the Jazz client

I have never installed the client on a Mac, so you will have to figure this part out by

yourself. On a Windows platform simply unzip the file you just downloaded.

Running RTC for the first time
To run RTC, simply go to the folder on your windows machine that you just unzipped

and then open jazz\client\eclipse and double click on the eclipse.exe.

Selecting a workspace

The first thing RTC will ask you upon start-up is to provide a workspace. The concept of

workspace is part of Eclipse, it indicates the directory where all of your source files,

binaries, external jars and other development resources (such as icons) will be stored.

This is intended to be the unique entry point for development, so it may eventually get

filled with various unrelated projects and libraries. This is not really a problem, however,

since Eclipse offers various techniques to efficiently filter your workspace content.

If you already have an Eclipse workspace, you should not use it with RTC. This is

because RTC uses a customized version of Eclipse that seems to create various

incompatibilities. You should therefore make sure you are creating a new workspace

specifically for RTC.

Welcome screen

After configuring your workspace, you should see the following welcome screen.

Tip: If you don’t get this welcome screen, or if you want to return to it later, simply select

Help > Welcome from the RTC menu.

https://jazz.net/downloads/rational-team-concert/releases/2.0.0.2iFix5
http://jazz.net/

Figure 1. Welcome screen for the RTC client.

Alt: welcome screen capture

Click on Workbench.

Eclipse Views and Perspective

The Workbench refers to the main Eclipse window and, for now, it should look similar

to this:

Figure 2. Workbench with Team Artifacts View open.

Alt: screen capture of workbench

The workbench contains a menu, a toolbar, a status bar, and an arrangement of

subwindows. Each of these subwindows contains a number of Tabs. For example the

currently selected tab on the left is called “Team Artifacts”. In Eclipse, the content of

these tabs are called Views and are used to gather together related information.

In the image above (Figure 2), the large gray subwindow will contain a special type of

views called Editors. You probably already know the standard editor that you use for

entering Java code. Other kinds of editors we will meet include the Work Item editor and

the Iteration Plan editor, among others.

Notice on the upper right the button “Work Items”. This button indicates the current

Eclipse Perspective. A Perspective is simply a specific configuration of Views and

Editors that facilitates a particular task. When working with RTC, you usually want the

Work Items perspective. When editing code, you will want to be in the Java perspective.

When debugging, you will use the Debug perspective. You can change perspective

through the menu Window > Open Perspective.

Remember that a perspective is simply a useful arrangement of views. All the views can be

accessed in all the perspectives using Window > Show View. Views can also be moved around,

reorganized or closed by clicking the “X” button in the tab. If you mess too much with your

workbench, you can always clean it up using Window > Reset Perspective.

Connecting to a repository

You will need to manually connect to a repository. To do so, make sure you are in the

Work Items perspective and that the Team Artifact view is selected. Then click on the

“Connect to project area” link. This should pop-up a dialog. Select “Create a new

repository connection” and click Next.

Figure 3. Wizard for connecting to a Project Area.

Alt: screen capture

You should then fill-out the form as indicated above, but enter your server URI and your

own User ID and Password. Click Next to connect to the Jazz server.

In case the connection fails, make sure you typed the correct URI. Second, check the User ID

and password. Finally, make sure you are using the right client version.

You will then see a list of Project Areas.

Figure 4. Exemplary list of Project Areas.

Alt: screen capture of Project Area selection list.

 You should select the main project area you will be using. In our case, we select CPSC

310 – Spring 11, the Project Area for the class project we are working with. In addition,

you can select other project areas. Click “Finish” and you will see, in the Team Artifact

view, that your repository connection has been created, together with the selected project

areas.

Note that there is a difference between Java Projects and RTC’s Project Areas. A project area

is expected to group together all the development effort related to a specific product, but it is

often the case that a product contains numerous Java projects.

2 – Teams

Introduction
You should already be added to a team by the server administrator before you continue.

You can check if you have been correctly added to your team by looking at “My Team

Areas” in the “Team Artifacts” view.

Working in your own account
You should always be working from your own account. Do not edit or update

anything using somebody else’s account. It’s important that everything you do and

everything you work on be correctly attributed to your user name.

Do not fool around in the main project
You have a lot of permissions in the main project. For example, you could add yourself to

more than one team, or try customizing the process for your team. Please don’t do that

since it could seriously affect the project configuration. If you are interested in exploring

various other features of RTC, feel free to create a sandbox Project Area and do so in

there.

3 – Work Items

Introduction
A large development project is made of an accumulation of small tasks: from the classes

you should code to the bugs you must squash, including even writing the documentation

your client requests… These tasks are distributed among the team’s members, and it is

often very useful to know what the other members are (or should be) working on. Since

Rational Team Concert is all about organizing team work, it provides very efficient tools

to do just that.

Creating and managing Work Items
The cornerstone of team work management, in RTC, is called the Work Item. Work

Items are (usually short) tasks that need to be performed in order to achieve a specific

goal. The many attributes present in a work item lets you add various details, including

how long it should take to resolve, who should be working on it and when it is due.

Creating a Work Item

As part of this tutorial, you are required to create a first work item. Since this is one of

your tasks, you should as well create a work item for it! To do this, click the “New work

item” (Figure 5). Select the project area you will be working with, in our case the “CPSC

310 – Spring 11” project, and then “Task” for your work item type. You should now see

the Work Item Editor (Figure 6).

Figure 5. New Work Item button.

Figure 6. Work Item Editor.

You need to fill out this task. Every work item must have a Summary, so enter one (For

example: “My first Work Item”). Another field you need to fill out for every work item

is Filed Against. In our case, we have a category “Jazz Tutorial” for this tutorial that we

select. Another field you should fill in every Work Item is the Planned For attribute.

This describes which iteration the Work Item is planned for and makes it appear in the

Iteration Plan, which we’ll describe shortly. We choose Jazz Tutorial Iteration, the

iteration that was created for this tutorial. Finally, in the Owned By field, you can assign

the work item to any member of your team. For now, assign the work item to yourself.

If you don’t see the category that you are looking for, there can be various reasons. Most

likely, you did not add the Work Item to the right project area. Click the little arrow on the

right of the Work Item’s title then select Move/Copy to Project Area (Figure 7)…

Figure 7. Task drop down menu allowing you to move/copy a task to
a different project area.

You can fill the other fields if you like, however a lot of Work Items do not need such

precision. If you want to estimate the required time to complete this task enter something

like “5 mins” in the Estimate field. If you think the work item is complex enough, add

some details in the Description field. You get the idea.

It could happen than a warning sign appears. Leaving your mouse on this sign you will

probably display “Owner does not belong to Team Area” (see Figure 8). This usually means

that you selected the wrong Category. Make sure you select a Category (in Filed Against)

corresponding to the team the desired Owner is in.

Figure 8. Warning about owner of the task.

During the project, you will constantly be creating new Work Items. So adding a Work

Item must be quick and easy. Make sure you master the process described above and

don’t hesitate to add simple Work Items with the minimal set of attributes: Summary,

Type, Category and Planned For. They can always be clarified later.

Tip: As you noticed, saving the Work Item does not close the Editor. You could manually close

it by clicking the “X” button, but sometimes it is good to leave it around so that you can easily

come back once you’ve completed the task.

Changing the status of a Work Item

When you are done entering the details of your Work Item, click the “Save” button on the

upper-right corner of the Work Item Editor. Notice how the Work Item status changes

from “Uninitialized” to “New”. This indicates that the Work Item has been successfully

created. Most of the time, you will leave it in that state for now.

When you start working on a Work Item, however, you may want to change its status to

indicate this. To do so, click on the drop-down arrow and select “Start Working”. Do this

now for your current Work Item, then click Save again. The status as changed to “In

Progress”.

Don’t worry if you forget to change the status of a task before you start working on it.

This status is usually useful for larger tasks. It is often the case that a small task will

directly go from “New” to “Resolved”.

Discussing a Work Item

Work items often concern an entire team, and various team members may have an

opinion on how to perform the task. The best way to make sure your thoughts are not lost

is to record them in the discussion related to the task. To do so, click the “Add Comment”

link at the bottom right of the Work Item editor and enter a comment in the newly created

edit box. For this tutorial you must add at least one comment to the discussion. When

you’re done, click Save.

Checking the evolution of a Work Item

Complex tasks will sometimes stay open for a while. When this happens, it is sometime

interesting to check what has happened with it in the past. This is achieved by clicking

the “History” tab at the bottom of the Work Item Editor. If you click on it now you

should see something as presented in Figure 9.

Figure 9.Task History.

This window shows a time-line indicating when activity has been recorded on the Work

Item, together with a list of the changes that have occurred. In practice, this kind of view

is often used by managers to check the progress of a project and to make sure the

workload is well distributed among the team members and that everybody contributes.

Closing your work item

Since you have successfully created this work item you have accomplished your task!

Change its status from “In Progress” to “Resolve” then click “Save”.

Advanced features

Work items can become quite complex. They can be organized hierarchically, they can

refer to one another, they can require approval by other team members, etc. We shouldn’t

be needing these advanced features, but it is good to know they exist. Feel free to

experiment with them in a sandbox project area.

Searching for work items
Creating work items wouldn’t be very useful if you were not able to look for them. To

search for work items, go to the Team Artifacts view, expand the project area, in our case

CPSC 310 - Fall 11, then Work Items, then Shared Queries and Predefined (Figure 10).

Figure 10.Predefined Queries in the Team Artifacts view.

You should now see a long list of queries. All of these refer to work items and can be

useful at various stages of the project development. Double click on the “Closed

created by me” query.

This will populate the Work Items view, at the bottom of the screen. There you should

see that “My first Work Item” is now resolved.

Other queries

Take a look at the other queries. They have descriptive names that let you guess what

they are doing. In reality, they are just filters over the various attributes of a Work Item.

Try to imagine scenarios in which you would need to know all the Work Items “Open

created by me”, or the “New unassigned” work items.

To know exactly what a query is doing, try right-clicking it and selecting Edit…

How to use work items

When to create work items

You should create work items as soon as you think of something to do, even if you

start doing it immediately! The reason is that work items are not only your To Do list,

they are an integral part of the project and make it possible to trace its evolution through

the accumulation of tasks. So if you start working on some piece of code or writing a

design document, make sure you have a corresponding work item!

Tip: You don’t have to go to the Work Items perspective to add a work item. The “New Work

Item” button appears on the toolbar even when you’re coding or debugging.

What is a good work item

Let’s take an example. Among the following which is the best work item: “implement

vector addition”, “write the vector class” or “create the mathematics module”? The

answer is very subjective: a work item should be small enough to be tackled by a single

individual in a short amount of time and it should be descriptive of the work to be

performed. However, it shouldn’t divide the work to the point that Work Item

maintenance becomes tedious. In all cases, don’t worry if you don’t get the Work Item

right on the first try, you can always divide it up later.

4 – Users

Introduction
Teams are made up of users: you and your teammates. This chapter describes how you

can find and setup your user page to give a bit more information about you.

Opening a user page
To get more information about a user (or yourself!), you must open the user page. To do

so, open the Team Artifacts view and expand My Team Areas. This will display the list of

teams you’re a part of – look for your team. Expand this team and you should see the

name of all your teammates. Double-click on your name, this will bring up the User

Editor.

If you want to open the user page of somebody who is not in your team, open the Process

perspective and from the Team Organization view, look for a team this user is in.

Editing a user page

Changing your profile picture

Using this editor you can change various things in your profile, such as your name or

your picture. Change your picture now by clicking “Browse…” and selecting a local

image file. If you don’t have a picture of you, download a small image off the internet

and use it as a placeholder. Don’t forget to click Save!

You should try to use a picture of yourself instead of an avatar. This will help your teammates

identify you, especially in bigger project teams.

Editing your Working Hours

From your User Editor page, click the Work Environment tab at the bottom. Make sure

your Time Zone is set to your local time zone, in our case “America/Vancouver”.

5 – Conclusion

What you should have learned
After completing this tutorial, you should have a basic understanding of the following

important concepts of Eclipse and RTC:

 What the Eclipse Perspectives and Eclipse Views are and how to manipulate them;

 That RTC helps organize the work of teams working on the same software project;

 What a Project Area is and how it differs from a standard Java project;

 Why it is important to work from your own account when using RTC;

 What is a Work Item and what are its important attributes;

 How to quickly create a new Work Item and change its status;

 How to discuss a Work Item and check its evolution;

 How to search for work items based on various criteria;

 When you should create Work Items and what you should put in them;

 How to edit your user profile;

What you should have done
If you followed this tutorial correctly, you should have accomplished at least the

following:

 Created an account on the Jazz Community Site;

 Launched RTC and created your own workspace;

 Connected to a repository and a project area;

 Created a first work item and changed it status to “Start Working” and then “Resolve”;

 Posted your user picture (or a placeholder);

There is more to RTC
It will definitely be useful to spend some time using RTC before the project phase starts.

For the project, we will need to introduce new concepts, such as hierarchical teams,

streams and source control. This will be explained in a future tutorial that you will work

on during a future lab.

For more information visit the website http://jazz.net or look at the Help under Help >

Help Contents. There are several good tutorials/lessons on the usage of basic features of

RTC for example under Tutorials > Do and Learn > Get started with Rational Team

Concert. Get familiar with RTC as soon as possible so that you can concentrate on the

actual project later on.

http://jazz.net/

Jazz Tutorial – Using RTC for a group project – Part II

Introduction
The first part of the Jazz tutorial introduced you to the fundamental concepts of Rational

Team Concert. It mostly focused on team creation and work items. In this part of the

tutorial we will show how RTC can also be used to keep track of the evolution of the

project itself through its source control mechanism and a defined software development

process with iterations.

Following this tutorial
This document assumes that you read, understood and followed Part I of this tutorial.

You should also launch RTC and connect to the server before you start this tutorial.

Pay particular attention to everything that is underlined. It either describes a very

important concept or an action you need to take in order to successfully complete this

tutorial.

Going further
For more information about source control in RTC you can check the online tutorial:

https://jazz.net/learn/LearnItem.jsp?href=content/docs/source-control/index.html

This tutorial digs more deeply into some advanced concepts, such as resolving conflicts.

1 – Overview.

Each student (in our example in Figure 11: Thomas), will have his/her own local

workspace the same way as you have a workspace in Eclipse on your local machine.

Each student will also have a repository workspace (in Figure 11: Thomas’s Repository

WS) on the server that serves as a safe copy for all the project code that he/she has

checked in.

If you are familiar with CVS, you can think of your repository workspace as your very own CVS

repository, into which only you will be checking in code.

Apart from your own repository workspace, you also want to share code with your

teammates. For this purpose there is a data stream for each team on the server.

Once you change the code of the project and you want to save the changes, you should

check-in to your repository workspace. Once you’re ready to share these changes with

the team so that everybody can see them, you just deliver them to the stream. Once

delivered, your teammates will see that there are incoming changes and they can accept

them into their workspace. When they accept them, your changes will be in their

https://jazz.net/learn/LearnItem.jsp?href=content/docs/source-control/index.html

repository workspace as well as their local workspace. So the stream serves to share and

save your team’s code.

Figure 1. Basic Workspace and Stream setup for a project.

2 – Data Streams

Introduction
Before you can start using Jazz source control you need to create a data stream.

Remember: a data stream is used by a team to share source code. You will therefore need

only one stream for your entire development team.

Creating your data stream
You will have to create ONE stream for your development team. So, the first team

member to complete this part of the tutorial will have to create the stream. To check if

it’s already been done, make sure you are using the Work Items perspective and then

select the Team Artifacts view and expand Source Control under the project area item, in

our case CPSC 310 - Spring 11 > Source Control. If you see a stream for your team, it’s

already been created and you can skip to the “Repository Workspace” section (section 3).

If the stream doesn’t exist yet, please follow the rest of the instructions in this

section to create it.

Go to the Work Items perspective, open the Team Artifacts view and expand your project

area (CPSC 310 – Spring 11 in our case). Then right-click on the Source Control node

and select New > Stream… . This will bring up a Stream editor. In the Name box write

your stream name. Then click the Browse button and select your development team. You

can also add a short description of this stream.

You then need to add a component to this stream. In our case, each development team

will just use one component, but your component can contain multiple java projects. To

add the components click New… in the Components section and enter a name for your

component (“Hockey Pool” or something similar for our hockey pool project) and click

OK.

Click Save to save this stream.

3 – Repository Workspace

Introduction
Before you start using Jazz’s source control you will need to setup your repository

workspace. Remember: the repository workspace lives on the Jazz server and acts as a

backup copy of your local workspace.

In fact, it is more than a simple backup copy, it is a version controlled copy. It keeps track of

all the changes you made and you can always revert to an earlier version if things go wrong.

Creating a repository workspace
Since everybody should have his or her own repository workspace, you need to

complete this step individually. First, make sure you are using the Work Items

perspective. From there, select the Team Artifacts view and expand the Source Control

node under the project area node, in our case CPSC 310 - Spring 11 > Source Control.

Locate your stream, right-click on it and select New Repository Workspace…. In the

repository workspace name enter “John Doe Repository Workspace” (replace John Doe

by your own name, naturally!) Click Next, select Public, click Next again, make sure the

component created in the previous section is selected and click Finish.

If you get a “Load Repository Workspace” wizard, you can select “Find and load Eclipse

Projects”, then click Finish.

In the Team Artifacts view you can now expand the My Repository Workspaces and you

should see your newly created repository workspace. Double-click on it and you should

get the following (except that your flow target should be your team’s stream):

Figure 2. Workspace editor.

4 – Using RTC source control

Introduction
Your environment is now correctly setup to use source control. This section of the

tutorial will show you how to use source control to backup and exchange your code.

Creating the project
One person on your team needs to create the project that you will be working on. Switch

to the Java Perspective and open the Package Explorer view. If you can see the project

(HockeyPool in our case), one of your team members has already created it so you can

skip ahead to the “Exchanging source code with your team” section. If you don’t see the

project, you will need to create it.

Create the project. Then, right-click the Project name and select Team > Share

Project… . Select Jazz Source Control, click Next, and then select the component in your

Repository Workspace (created in the “Creating your data stream” section above) and

then select Finish.

To share the project with your team members, you must check-in to your repository

workspace and then deliver to the stream. To check-in, right-click the Project name and

select Team > Check-in. Now, to deliver the project to your team’s stream, right-click the

Project name and select Team > Deliver.

Exchanging source code with your team

Editing code

You should now add classes or edit the code.

Remember: every time you check-in a file it automatically gets backed up to your

repository work space. You can therefore seamlessly work from your laptop, from home

or any other machine!

Looking at your changes

Once you’ve modified some code, look for the yellow background on the file’s icon. The

yellow background indicates that you have made some changes that have not yet been

checked-in to your repository workspace (Figure 3).

Figure 3. Indication of change in the Package Explorer view.

To check-in these changes, right-click the file then select Team... > Check-in. Now your

changes have been saved in your repository workspace.

Once you’re ready to share your changes with your team you need to Deliver the

changes. Look for the Pending Changes view (it should be at the bottom of your screen).

Remember, if you can’t find a view just select it from Window > Show View.

The change symbol identifies a change-set: that is, all the files you have modified

since you last delivered your code to the stream. If you want to view these changes you

can double-click on any java file and a Difference editor will appear, showing which

lines were inserted and which were deleted.

Associating your change-set to a work item

In Part I of the tutorial we mentioned that every task you perform should correspond to a

work item. This is especially important when editing code. So the changes you just

performed to the code should correspond to a Work Item. For now, you should therefore

create a Task and name it My first code edit.

Normally, the work item should usually be created before you start editing code. This work

item will be a Task when a new feature needs to be implemented, or a Defect if you are

correcting a bug.

Now, in the Pending Changes view, right-click on the change set and select Associate

Work Item. Select the corresponding work item (you may have to type it in) and click

OK. You should now see the description of the Work Item instead of <Enter a Comment>

beside the change set.

If you specified that you are currently working on a Work Item – by changing its status to Start

Working in the Work Item editor – then it will be automatically associated with your change

set and you will not have to go through the preceding procedure.

Delivering a change set

To deliver your changes, right-click on the change set and select Deliver and Resolve

Work Item…. This will bring-up a dialog in which you can add some comments to the

Work Item. The changes will now be available to every other member of your team.

NOTE: You should only deliver changes to the team that compile and pass the tests. If

the changes you deliver do not compile, it will slow down the whole team!

Failed delivery

The delivery operation may fail if one of your teammates delivered changes before you.

This is because the system requires that you accept their changes before you can deliver

yours. This ensures that you are all working on the same version of the project, and that

potential conflicts are always resolved.

Accepting changes

To accept changes, click on the accept button . This could generate conflicts if the

changes appear in the same file you modified. Don’t worry, RTC will bring up a special

editor to let you resolve these conflicts.

5 – Product and Sprint Backlog

Introduction
A software development process is usually divided in a number of iterations (also known

as phases). The nature of these iterations will change based on the process model chosen

by the team, but the concept of iteration remains. This concept is an integral part of RTC,

and one way in which it is visible is through Iteration Plans.

In our case, we will use a Scrum process with one major release and two sprints (two

iterations). If you are not familiar with Scrum, you should quickly read up on Scrum on

the web to understand the basic concepts and in particular the next steps in our tutorial.

Creating a Product Backlog
A product backlog contains all desired functionality for a particular release in the form of

a prioritized list of product backlog items / user stories. It is used by an entire team.

Creating a product backlog can be done by any member of the team, but make sure only

one of you is responsible for creating it, otherwise you will end-up with duplicates.

From the Team Artifacts view, go to Plans > All Plans > Main Development > Release

1.0, right-click and select New > Plan…

This will bring up a dialog (Figure 4). Name your iteration plan and make sure the

Owner is your team and the Iteration is Release 1.0. Then expand the “Advanced

Options”, select “Product Backlog” in the drop down menu and click “Finish”.

Figure 4. New Iteration Plan dialog.

Creating User Stories
You should now add the user stories for your project to the product backlog plan. When

you open your Product Backlog Plan in the editor and go to the Planned Items tab, right-

click on Release 1.0 and you can add your user stories by selecting Add Work Item >

Story. Fill in the summary of the user story in the text field.

Save the plan so that the user story is actually saved and open it in the editor by double-

clicking the user story. Now add the relevant information, i.e. the story points (if you

already decided on them), the priority and the acceptance criteria (under the acceptance

test tab). Also make sure to file the user story against your team, i.e. select your team

category in the Filed Against drop down menu (if the team category does not appear right

away, click on More…, then you should be able to find it). You do not need to specify an

owner yet.

Creating a Sprint Backlog
After the sprint planning meeting in which you decided on the user stories that you are

going to include in the sprint, one of your teammates has to create the sprint backlog

(basically an iteration plan). Again make sure only one of you is responsible of creating

it. otherwise you will end-up with duplicates.

For creating the Sprint Backlog you have to make sure to create the sprint backlog in the

appropriate sprint, i.e. go to All Plans > Main Development > Release 1.0 > Sprint 1

(1.0) for the first sprint, right-click it and create a new plan. Name your sprint backlog

and don’t forget to select your team as the owner and the sprint (Sprint 1 for the first

sprint) in the Iteration, and select Iteration Plan in the Advanced Option section.

Each sprint backlog should have a short description for the main outcome of the sprint.

Click on the start editing link in the Overview tab and briefly describe what your

team wants to do in the Sprint. Click Save.

To move user stories from your product backlog into your sprint backlog, open your

product backlog and drag and drop the user stories from the Release 1.0 section to the

Sprint 1 section (in the Planned Items tab).

NOTE: if you do not see the Release 1.0 and Sprint 1 section in the Planned Items tab of

the product backlog, select Edit under View as on the right side of the editor and then

under Grouping select Iteration. Save this and the product backlog should now contain

sections for the release and all sprints.

Dragging and dropping the items into the appropriate sprint will automatically associate

them with the sprint and add them to your sprint backlog. So if you now open your sprint

backlog again and go the Planned Items tab you should see the stories that you associated

with the sprint.

Creating Sprint Tasks
Now that you have selected the user stories for your first sprint, you want to refine the

user stories and create the actual tasks that you have to work on. So first open the sprint

backlog. For now all user stories should be in the Unassigned section. Right-click on a

user story and follow Add Work Item > Task to create a task. Fill in the summary field

and press the save button to save the task. Open the task by double-clicking onto it and

then fill in the other information. If the task is part of a user story, you should make this

relation explicit by adding the user story as its parent (either by adding a parent in the

task or by dragging and dropping the task onto the user story)

.

NOTE: Make sure to file your user stories and your tasks or defects against your team

(i.e. choose the proper category in the Filed Against field). Otherwise, the

story/task/defect will not show up in your product/sprint backlog.

When you decide to start working on a task or a user story, make sure to change the

Owner to reflect you, so that everyone on the team can see that you are working on it.

At the end of an iteration, all the work items contained in the corresponding Iteration Plan

must be resolved. If you have some work items left, you should either move them to the next

iteration or resolve them, for example by indicating “Won’t fix” in the appropriate field.

Since the Iteration Plan is such a great tool, you can make it part of your favourite pages. Just

right-click on it in the Team Artifacts view and select Add to Favorites… It will now appear in

your Favorites folder.

6 – Conclusion

Impotant concepts
Local Repository: The copy of the code that is on your hard drive; in the lab or at home.

Repository Workspace: Your own source-controlled backup, on the Jazz server.

Stream: The object through which teams exchange code.

Change set: A number of changes to various source files. A change set is a unit of

changes that should be associated with a single work item.

Delivering: The act of moving code from your repository workspace to a stream.

Accepting: The act of moving code from a stream to your repository workspace.

Flow Target: The flow target of a repository workspace indicates the stream to which

deliver and accept operations are performed.

What you should have learned
After completing this tutorial, you should have a basic understanding of the following

important concepts related to Eclipse and RTC:

 The difference between your local workspace and the repository workspace;

 The concept of a stream to share code with other members of your team;

 How to create a stream and a repository workspace;

 The concept of a change set;

 How to associate a Work Item with a change set;

 How to check-in code to your repository workspace

 How to accept and deliver changes between you and your teammates;

 How to integrate your changes with your project teammates;

 That a software development process is a series of iterations;

 How to create a product and a sprint backlog;

 How to add user stories to a product backlog and to a sprint backlog;

 How to write the overview of a sprint backlog;

 How to add tasks to a sprint backlog and how to manage them.

